Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 16: 1362637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560023

RESUMO

Background: Disproportionately enlarged subarachnoid-space hydrocephalus (DESH) is a key feature for Hakim disease (idiopathic normal pressure hydrocephalus: iNPH), but subjectively evaluated. To develop automatic quantitative assessment of DESH with automatic segmentation using combined deep learning models. Methods: This study included 180 participants (42 Hakim patients, 138 healthy volunteers; 78 males, 102 females). Overall, 159 three-dimensional (3D) T1-weighted and 180 T2-weighted MRIs were included. As a semantic segmentation, 3D MRIs were automatically segmented in the total ventricles, total subarachnoid space (SAS), high-convexity SAS, and Sylvian fissure and basal cistern on the 3D U-Net model. As an image classification, DESH, ventricular dilatation (VD), tightened sulci in the high convexities (THC), and Sylvian fissure dilatation (SFD) were automatically assessed on the multimodal convolutional neural network (CNN) model. For both deep learning models, 110 T1- and 130 T2-weighted MRIs were used for training, 30 T1- and 30 T2-weighted MRIs for internal validation, and the remaining 19 T1- and 20 T2-weighted MRIs for external validation. Dice score was calculated as (overlapping area) × 2/total area. Results: Automatic region extraction from 3D T1- and T2-weighted MRI was accurate for the total ventricles (mean Dice scores: 0.85 and 0.83), Sylvian fissure and basal cistern (0.70 and 0.69), and high-convexity SAS (0.68 and 0.60), respectively. Automatic determination of DESH, VD, THC, and SFD from the segmented regions on the multimodal CNN model was sufficiently reliable; all of the mean softmax probability scores were exceeded by 0.95. All of the areas under the receiver-operating characteristic curves of the DESH, Venthi, and Sylhi indexes calculated by the segmented regions for detecting DESH were exceeded by 0.97. Conclusion: Using 3D U-Net and a multimodal CNN, DESH was automatically detected with automatically segmented regions from 3D MRIs. Our developed diagnostic support tool can improve the precision of Hakim disease (iNPH) diagnosis.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38502433

RESUMO

Cellular traction forces are contractile forces that depend on the material/substrate stiffness and play essential roles in sensing mechanical environments and regulating cell morphology and function. Traction forces are primarily generated by the actin cytoskeleton and transmitted to the substrate through focal adhesions. The cell nucleus is also believed to be involved in the regulation of this type of force; however, the role of the nucleus in cellular traction forces remains unclear. In this study, we explored the effects of nucleus-actin filament coupling on cellular traction forces in human dermal fibroblasts cultured on substrates with varying stiffness (5, 15, and 48 kPa). To investigate these effects, we transfected the cells with a dominant-negative Klarsicht/ANC-1/Syne homology (DN-KASH) protein that was designed to displace endogenous linker proteins and disrupt nucleus-actin cytoskeleton connections. The force that exists between the cytoskeleton and the nucleus (nuclear tension) was also evaluated with a fluorescence resonance energy transfer (FRET)-based tension sensor. We observed a biphasic change in cellular traction forces with a peak at 15 kPa, regardless of DN-KASH expression, that was inversely correlated with the nuclear tension. In addition, the relative magnitude and distribution of traction forces in nontreated wild-type cells were similar across different stiffness conditions, while DN-KASH-transfected cells exhibited a different distribution pattern that was impacted by the substrate stiffness. These results suggest that the nucleus-actin filament coupling play a homeostatic role by maintaining the relative magnitude of cellular traction forces in fibroblasts under different stiffness conditions.

3.
Aging Dis ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38029394

RESUMO

How do regional brain volume ratios and cerebral blood flow (CBF, mL/min) change with aging, and are there sex differences? This study aimed to comprehensively evaluate the relationships between regional brain volume ratios and CBF in healthy brains. The study participants were healthy volunteers who underwent three-dimensional T1-weighted MRI, time-of-flight MR angiography, and four-dimensional (4D) flow MRI between 2020 and 2022. The brain was automatically segmented into 21 brain subregions from 3D T1-weighted MRI, and CBF in 16 major intracranial arteries were measured by 4D flow MRI. The relationships between segmented brain volume ratios and CBFs around the circle of Willis were comprehensively investigated in each decade and sex. This study included 129 healthy volunteers (mean age ± SD, 48.2 ± 16.8; range, 22-92 years; 43 males and 86 females). The association was strongest between the cortical gray matter volume ratio and total outflow of the intracranial major arteries distal to the circle of Willis (Pearson's correlation coefficient, r: 0.425). In addition, the mean flow of the total inflow and outflow around the circle of Willis were significantly greater in women than men, and significant left-right differences were observed in CBFs even on the peripheral side of the circle of Willis. Moreover, the correlation was strongest between the left cortical gray matter volume ratio and the combined flows of the left anterior and posterior cerebral arteries distal to the circle of Willis (r: 0.486). There was a trend toward greater total intracranial CBF, especially among women in their 40s and younger, who had a larger cortical gray matter volume. This finding may be one of the reasons for the approximately twofold higher incidence of cerebral aneurysms and subarachnoid hemorrhage, and a threefold higher incidence of migraine headaches.

4.
PLoS Comput Biol ; 19(9): e1011452, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37683012

RESUMO

The cerebral arterial network covering the brain cortex has multiscale anastomosis structures with sparse intermediate anastomoses (O[102] µm in diameter) and dense pial networks (O[101] µm in diameter). Recent studies indicate that collateral blood supply by cerebral arterial anastomoses has an essential role in the prognosis of acute ischemic stroke caused by large vessel occlusion. However, the physiological importance of these multiscale morphological properties-and especially of intermediate anastomoses-is poorly understood because of innate structural complexities. In this study, a computational model of multiscale anastomoses in whole-brain-scale cerebral arterial networks was developed and used to evaluate collateral blood supply by anastomoses during middle cerebral artery occlusion. Morphologically validated cerebral arterial networks were constructed by combining medical imaging data and mathematical modeling. Sparse intermediate anastomoses were assigned between adjacent main arterial branches; the pial arterial network was modeled as a dense network structure. Blood flow distributions in the arterial network during middle cerebral artery occlusion simulations were computed. Collateral blood supply by intermediate anastomoses increased sharply with increasing numbers of anastomoses and provided one-order-higher flow recoveries to the occluded region (15%-30%) compared with simulations using a pial network only, even with a small number of intermediate anastomoses (≤10). These findings demonstrate the importance of sparse intermediate anastomoses, which are generally considered redundant structures in cerebral infarction, and provide insights into the physiological significance of the multiscale properties of arterial anastomoses.


Assuntos
AVC Isquêmico , Humanos , Infarto da Artéria Cerebral Média , Artérias , Encéfalo , Simulação por Computador
5.
World Neurosurg ; 178: 351-358, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37516143

RESUMO

Cerebrospinal fluid (CSF) dynamics has dramatically changed in this century. In the latest concept of CSF dynamics, CSF is thought to be produced mainly from interstitial fluid excreted from the brain parenchyma and is absorbed in the meningeal lymphatics. Moreover, CSF does not always flow from the ventricles to the subarachnoid space unidirectionally through the foramina of Magendie and Luschka. In an environment of increased intracranial CSF in idiopathic normal pressure hydrocephalus, CSF freely moves through the inferior choroidal point of the choroidal fissure, which interfaces between the inferior horn of the lateral ventricles and the ambient cistern and through the velum interpositum between the third ventricle and the quadrigeminal cistern. The structure of the hippocampus adjacent to the inferior part of the choroidal fissure may be important in preventing the accumulation of waste products in the hippocampus. A recent imaging technology for CSF dynamics, such as four-dimensional flow and intravoxel incoherent motion magnetic resonance imaging, can visualize and quantify the pulsatile complex CSF motion in clinical usage. We present the current concepts of CSF dynamics with advanced magnetic resonance imaging techniques, which will be helpful in the management and understanding of the pathogenesis of chronic hydrocephalus in adults.

6.
World Neurosurg ; 176: e427-e437, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37245671

RESUMO

OBJECTIVE: The presence of tightened sulci in the high-convexities (THC) is a key morphological feature for the diagnosis of idiopathic normal pressure hydrocephalus (iNPH), but the exact localization of THC has yet to be defined. The purpose of this study was to define THC and compare its volume, percentage, and index between iNPH patients and healthy controls. METHODS: According to the THC definition, the high-convexity part of the subarachnoid space was segmented and measured the volume and percentage from the 3D T1-weighted and T2-weighted magnetic resonance images in 43 patients with iNPH and 138 healthy controls. RESULTS: THC was defined as a decrease in the high-convexity part of the subarachnoid space located above the body of the lateral ventricles, with anterior end on the coronal plane perpendicular to the anterior commissure-posterior commissure (AC-PC) line passing through the front edge of the genu of corpus callosum, the posterior end in the bilateral posterior parts of the callosomarginal sulci, and the lateral end at 3 cm from the midline on the coronal plane perpendicular to the AC-PC line passing through the midpoint between AC and PC. Compared to the volume and volume percentage, the high-convexity part of the subarachnoid space volume per ventricular volume ratio < 0.6 was the most detectable index of THC on both 3D T1-weighted and T2-weighted magnetic resonance images. CONCLUSIONS: To improve the diagnostic accuracy of iNPH, the definition of THC was clarified, and high-convexity part of the subarachnoid space volume per ventricular volume ratio <0.6 proposed as the best index for THC detection in this study.


Assuntos
Hidrocefalia de Pressão Normal , Humanos , Hidrocefalia de Pressão Normal/diagnóstico por imagem , Hidrocefalia de Pressão Normal/patologia , Espaço Subaracnóideo/diagnóstico por imagem , Espaço Subaracnóideo/patologia , Imageamento por Ressonância Magnética/métodos , Corpo Caloso/patologia , Ventrículos Laterais/patologia
7.
Eur Radiol ; 33(10): 7099-7112, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37060450

RESUMO

OBJECTIVES: To verify the reliability of the volumes automatically segmented using a new artificial intelligence (AI)-based application and evaluate changes in the brain and CSF volume with healthy aging. METHODS: The intracranial spaces were automatically segmented in the 21 brain subregions and 5 CSF subregions using the AI-based application on the 3D T1-weighted images in healthy volunteers aged > 20 years. Additionally, the automatically segmented volumes of the total ventricles and subarachnoid spaces were compared with the manually segmented volumes of those extracted from 3D T2-weighted images using the intra-class correlation and Bland-Altman analysis. RESULTS: In this study, 133 healthy volunteers aged 21-92 years were included. The mean intra-class correlations between the automatically and manually segmented volumes of the total ventricles and subarachnoid spaces were 0.986 and 0.882, respectively. The increase in the CSF volume was estimated to be approximately 30 mL (2%) per decade from 265 mL (18.7%) in the 20s to 488 mL (33.7%) in ages above 80 years; however, the increase in the volume of total ventricles was approximately 20 mL (< 2%) until the 60s and increased in ages above 60 years. CONCLUSIONS: This study confirmed the reliability of the CSF volumes using the AI-based auto-segmentation application. The intracranial CSF volume increased linearly because of the brain volume reduction with aging; however, the ventricular volume did not change until the age of 60 years and above and then gradually increased. This finding could help elucidate the pathogenesis of chronic hydrocephalus in adults. KEY POINTS: • The brain and CSF spaces were automatically segmented using an artificial intelligence-based application. • The total subarachnoid spaces increased linearly with aging, whereas the total ventricle volume was around 20 mL (< 2%) until the 60s and increased in ages above 60 years. • The cortical gray matter gradually decreases with aging, whereas the subcortical gray matter maintains its volume, and the cerebral white matter increases slightly until the 40s and begins to decrease from the 50s.


Assuntos
Inteligência Artificial , Imageamento por Ressonância Magnética , Adulto , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Envelhecimento , Líquido Cefalorraquidiano
8.
Fluids Barriers CNS ; 20(1): 16, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899412

RESUMO

BACKGROUND: In the cerebrospinal fluid (CSF) dynamics, the pulsations of cerebral arteries and brain is considered the main driving force for the reciprocating bidirectional CSF movements. However, measuring these complex CSF movements on conventional flow-related MRI methods is difficult. We tried to visualize and quantify the CSF motion by using intravoxel incoherent motion (IVIM) MRI with low multi-b diffusion-weighted imaging. METHODS: Diffusion-weighted sequence with six b values (0, 50, 100, 250, 500, and 1000 s/mm2) was performed on 132 healthy volunteers aged ≥ 20 years and 36 patients with idiopathic normal pressure hydrocephalus (iNPH). The healthy volunteers were divided into three age groups (< 40, 40 to < 60, and ≥ 60 years). In the IVIM analysis, the bi-exponential IVIM fitting method using the Levenberg-Marquardt algorithm was adapted. The average, maximum, and minimum values of ADC, D, D*, and fraction of incoherent perfusion (f) calculated by IVIM were quantitatively measured in 45 regions of interests in the whole ventricles and subarachnoid spaces. RESULTS: Compared with healthy controls aged ≥ 60 years, the iNPH group had significantly lower mean f values in all the parts of the lateral and 3rd ventricles, whereas significantly higher mean f value in the bilateral foramina of Luschka. In the bilateral Sylvian fossa, which contain the middle cerebral bifurcation, the mean f values increased gradually with increasing age, whereas those were significantly lower in the iNPH group. In the 45 regions of interests, the f values in the bilateral foramina of Luschka were the most positively correlated with the ventricular size and indices specific to iNPH, whereas that in the anterior part of the 3rd ventricle was the most negatively correlated with the ventricular size and indices specific to iNPH. Other parameters of ADC, D, and D* were not significantly different between the two groups in any locations. CONCLUSIONS: The f value on IVIM MRI is useful for evaluating small pulsatile complex motion of CSF throughout the intracranial CSF spaces. Patients with iNPH had significantly lower mean f values in the whole lateral ventricles and 3rd ventricles and significantly higher mean f value in the bilateral foramina of Luschka, compared with healthy controls aged ≥ 60 years.


Assuntos
Hidrocefalia , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo , Ventrículos Laterais , Movimento (Física)
9.
J R Soc Interface ; 18(184): 20210554, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34753310

RESUMO

Thrombi form a micro-scale fibrin network consisting of an interlinked structure of nanoscale protofibrils, resulting in haemostasis. It is theorized that the mechanical effect of the fibrin clot is caused by the polymeric protofibrils between crosslinks, or to their dynamics on a nanoscale order. Despite a number of studies, however, it is still unknown, how the nanoscale protofibril dynamics affect the formation of the macro-scale fibrin clot and thus its mechanical properties. A mesoscopic framework would be useful to tackle this multi-scale problem, but it has not yet been established. We thus propose a minimal mesoscopic model for protofibrils based on Brownian dynamics, and performed numerical simulations of protofibril aggregation. We also performed stretch tests of polymeric protofibrils to quantify the elasticity of fibrin clots. Our model results successfully captured the conformational properties of aggregated protofibrils, e.g., strain-hardening response. Furthermore, the results suggest that the bending stiffness of individual protofibrils increases to resist extension.


Assuntos
Fibrina , Trombose , Elasticidade , Humanos
10.
FASEB J ; 35(12): e22071, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34820910

RESUMO

Cell nuclei behave as viscoelastic materials. Dynamic regulation of the viscoelastic properties of nuclei in living cells is crucial for diverse biological and biophysical processes, specifically for intranuclear mesoscale viscoelasticity, through modulation of the efficiency of force propagation to the nucleoplasm and gene expression patterns. However, how the intranuclear mesoscale viscoelasticity of stem cells changes with differentiation is unclear and so is its biological significance. Here, we quantified the changes in intranuclear mesoscale viscoelasticity during osteoblastic differentiation of human mesenchymal stem cells. This analysis revealed that the intranuclear region is a viscoelastic solid, probably with a higher efficiency of force transmission that results in high sensitivity to mechanical signals in the early stages of osteoblastic differentiation. The intranuclear region was noted to alter to a viscoelastic liquid with a lower efficiency, which is responsible for the robustness of gene expression toward terminal differentiation. Additionally, evaluation of changes in the mesoscale viscoelasticity due to chromatin decondensation and correlation between the mesoscale viscoelasticity and local DNA density suggested that size of gap and flexibility of chromatin meshwork structures, which are modulated depending on chromatin condensation state, determine mesoscale viscoelasticity, with various rates of contribution in different differentiation stages. Given that chromatin within the nucleus condenses into heterochromatin as stem cells adopt a specific lineage by restricting transcription, viscoelasticity is perhaps a key factor in cooperative regulation of the nuclear mechanosensitivity and gene expression pattern for stem cell differentiation.


Assuntos
Diferenciação Celular , Núcleo Celular/química , Cromatina/química , Elasticidade , Mecanotransdução Celular , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , DNA/química , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Viscosidade
11.
Ann Biomed Eng ; 49(7): 1670-1687, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33575930

RESUMO

Despite numerous experimental observations regarding heart failure with preserved ejection fraction (HFpEF), which is characterized mainly by left ventricular hypertrophy and a left ventricular ejection fraction over 50%, myocardial dynamics under HFpEF have not yet been fully clarified, particularly regarding the relationship between myocardial strain distribution and myocardial work. To address this issue, we numerically investigated radial distribution of myocardial strain during a cardiac cycle with fixed internal volume at the end of the systolic and diastolic phases under different mechanical conditions, such as those involving myocardial thickness and elasticity of myocardial fibers. The myocardium was a modeled as a visco-hyperelastic continuous material. This model was taken into account that active contractile stress along the myocardial fiber direction depends on membrane potential change. Our numerical results showed that both radial and circumferential strains decreased as wall thickness increased, which reflected cardiac hypertrophy, but that myocardial work became larger than that observed with thin ventricular walls. Further, the change in left ventricular diastolic internal pressure caused circumferential strain, while fiber stiffness contributed to radial strain. Since peak circumferential strain was well estimated by the maximum difference between total internal and myocardial volumes, measuring the epicardial contraction rate should be helpful in understanding patients with HFpEF.


Assuntos
Hipertrofia Ventricular Esquerda/fisiopatologia , Modelos Cardiovasculares , Miocárdio , Volume Sistólico , Função Ventricular Esquerda , Humanos
12.
PLoS Comput Biol ; 16(6): e1007943, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32569287

RESUMO

The cerebral vasculature has a complex and hierarchical network, ranging from vessels of a few millimeters to superficial cortical vessels with diameters of a few hundred micrometers, and to the microvasculature (arteriole/venule) and capillary beds in the cortex. In standard imaging techniques, it is difficult to segment all vessels in the network, especially in the case of the human brain. This study proposes a hybrid modeling approach that determines these networks by explicitly segmenting the large vessels from medical images and employing a novel vascular generation algorithm. The framework enables vasculatures to be generated at coarse and fine scales for individual arteries and veins with vascular subregions, following the personalized anatomy of the brain and macroscale vasculatures. In this study, the vascular structures of superficial cortical (pial) vessels before they penetrate the cortex are modeled as a mesoscale vasculature. The validity of the present approach is demonstrated through comparisons with partially observed data from existing measurements of the vessel distributions on the brain surface, pathway fractal features, and vascular territories of the major cerebral arteries. Additionally, this validation provides some biological insights: (i) vascular pathways may form to ensure a reasonable supply of blood to the local surface area; (ii) fractal features of vascular pathways are not sensitive to overall and local brain geometries; and (iii) whole pathways connecting the upstream and downstream entire-scale cerebral circulation are highly dependent on the local curvature of the cerebral sulci.


Assuntos
Algoritmos , Circulação Cerebrovascular , Modelos Biológicos , Córtex Cerebral/irrigação sanguínea , Humanos , Microcirculação
13.
Med Biol Eng Comput ; 57(4): 837-847, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30421262

RESUMO

Tracheal flow in infants with congenital tracheal stenosis (CTS) was numerically investigated using subject-specific airway models before and after reconstructive surgery. We quantified tracheal flow based on airway resistance during inhalation, and compared it between controls and patients before and after surgery. The airway resistance in each subject was assessed using geometrical parameters of the trachea: the minimum cross-sectional area Amin, the minimum cross-sectional area normalized by the standard deviation of the cross-sectional area Amin/σA, the area ratio of the minimum and maximum cross-sectional area Amin/Amax, and ratio of the normalized standard deviation of cross-sectional area to the mean cross-sectional area σA/Amean. Our numerical results demonstrated that such geometrical parameters could be used to assess the severity of CTS. Since subjects can be more clearly categorized as controls and most preoperative patients in terms of the airway resistance, a simulation using subject-specific airway models can lead us to a precise understanding of tracheal flow, and also provide knowledge about therapeutic decision. Our numerical results also demonstrated that significant surgical expansion of cross-sectional area did not help recover tracheal flow because of expansion loss. These results will be helpful not only when making therapeutic decisions about surgery but also when assessing quality of life in postoperative patients. Graphical abstract.


Assuntos
Constrição Patológica/congênito , Constrição Patológica/cirurgia , Hidrodinâmica , Traqueia/anormalidades , Traqueia/fisiopatologia , Traqueia/cirurgia , Resistência das Vias Respiratórias , Constrição Patológica/fisiopatologia , Humanos , Lactente , Cuidados Pré-Operatórios , Pressão , Reologia
14.
Clin Biomech (Bristol, Avon) ; 66: 32-39, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29370949

RESUMO

BACKGROUND: The pulmonary acinus is a dead-end microstructure that consists of ducts and alveoli. High-resolution micro-CT imaging has recently provided detailed anatomical information of a complete in vivo acinus, but relating its mechanical response with its detailed acinar structure remains challenging. This study aimed to investigate the mechanical response of acinar tissue in a whole acinus for static inflation using computational approaches. METHODS: We performed finite element analysis of a whole acinus for static inflation. The acinar structure model was generated based on micro-CT images of an intact acinus. A continuum mechanics model of the lung parenchyma was used for acinar tissue material model, and surface tension effects were explicitly included. An anisotropic mechanical field analysis based on a stretch tensor was combined with a curvature-based local structure analysis. FINDINGS: The airspace of the acinus exhibited nonspherical deformation as a result of the anisotropic deformation of acinar tissue. A strain hotspot occurred at the ridge-shaped region caused by a rod-like deformation of acinar tissue on the ridge. The local structure becomes bowl-shaped for inflation and, without surface tension effects, the surface of the bowl-shaped region primarily experiences isotropic deformation. Surface tension effects suppressed the increase in airspace volume and inner surface area, while facilitating anisotropic deformation on the alveolar surface. INTERPRETATION: In the lungs, the heterogeneous acinar structure and surface tension induce anisotropic deformation at the acinar and alveolar scales. Further research is needed on structural variation of acini, inter-acini connectivity, or dynamic behavior to understand multiscale lung mechanics.


Assuntos
Alvéolos Pulmonares/diagnóstico por imagem , Alvéolos Pulmonares/fisiopatologia , Tensão Superficial , Células Acinares , Anisotropia , Análise de Elementos Finitos , Humanos , Pulmão , Modelos Biológicos , Estresse Mecânico , Microtomografia por Raio-X
15.
J Biomech Eng ; 140(4)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29383379

RESUMO

Aneurysm recurrence is the most critical concern following coil embolization of a cerebral aneurysm. Adequate packing density (PD) and coil uniformity are believed necessary to achieve sufficient flow stagnation, which decreases the risk of aneurysm recurrence. The effect of coil distribution on the extent of flow stagnation, however, especially in cases of dense packing (high PD), has received less attention. Thus, the cause of aneurysm recurrence despite dense packing is still an open question. The primary aim of this study is to evaluate the effect of local coil density on the extent of blood flow stagnation in densely coiled aneurysms. For this purpose, we developed a robust computational framework to determine blood flow using a Cartesian grid method, by which the complex fluid pathways in coiled aneurysms could be flexibly treated using an implicit function. This tool allowed us to conduct blood flow analyses in two patient-specific geometries with 50 coil distribution patterns in each aneurysm at clinically adequate PD. The results demonstrated that dense packing in the aneurysm may not necessarily block completely the inflow into the aneurysm and local flow that formed in the neck region, whose strength was inversely related to this local PD. This finding suggests that local coil density in the neck region still plays an important role in disturbing the remaining local flow, which possibly prevents thrombus formation in a whole aneurysm sac, increasing the risk of aneurysm regrowth and subsequent recurrence.


Assuntos
Circulação Cerebrovascular , Aneurisma Intracraniano/fisiopatologia , Modelos Biológicos , Hidrodinâmica
16.
Artigo em Inglês | MEDLINE | ID: mdl-28618187

RESUMO

This paper presents a novel data assimilation method for patient-specific blood flow analysis based on feedback control theory called the physically consistent feedback control-based data assimilation (PFC-DA) method. In the PFC-DA method, the signal, which is the residual error term of the velocity when comparing the numerical and reference measurement data, is cast as a source term in a Poisson equation for the scalar potential field that induces flow in a closed system. The pressure values at the inlet and outlet boundaries are recursively calculated by this scalar potential field. Hence, the flow field is physically consistent because it is driven by the calculated inlet and outlet pressures, without any artificial body forces. As compared with existing variational approaches, although this PFC-DA method does not guarantee the optimal solution, only one additional Poisson equation for the scalar potential field is required, providing a remarkable improvement for such a small additional computational cost at every iteration. Through numerical examples for 2D and 3D exact flow fields, with both noise-free and noisy reference data as well as a blood flow analysis on a cerebral aneurysm using actual patient data, the robustness and accuracy of this approach is shown. Moreover, the feasibility of a patient-specific practical blood flow analysis is demonstrated.


Assuntos
Fluxo Sanguíneo Regional/fisiologia , Algoritmos , Teorema de Bayes , Humanos , Aneurisma Intracraniano/fisiopatologia , Modelos Teóricos
17.
J Biomech ; 64: 69-76, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28947160

RESUMO

This paper presents a novel inverse estimation approach for the active contraction stresses of tongue muscles during speech. The proposed method is based on variational data assimilation using a mechanical tongue model and 3D tongue surface shapes for speech production. The mechanical tongue model considers nonlinear hyperelasticity, finite deformation, actual geometry from computed tomography (CT) images, and anisotropic active contraction by muscle fibers, the orientations of which are ideally determined using anatomical drawings. The tongue deformation is obtained by solving a stationary force-equilibrium equation using a finite element method. An inverse problem is established to find the combination of muscle contraction stresses that minimizes the Euclidean distance of the tongue surfaces between the mechanical analysis and CT results of speech production, where a signed-distance function represents the tongue surface. Our approach is validated through an ideal numerical example and extended to the real-world case of two Japanese vowels, /ʉ/ and /ɯ/. The results capture the target shape completely and provide an excellent estimation of the active contraction stresses in the ideal case, and exhibit similar tendencies as in previous observations and simulations for the actual vowel cases. The present approach can reveal the relative relationship among the muscle contraction stresses in similar utterances with different tongue shapes, and enables the investigation of the coordination of tongue muscles during speech using only the deformed tongue shape obtained from medical images. This will enhance our understanding of speech motor control.


Assuntos
Fala/fisiologia , Língua/fisiologia , Adulto , Humanos , Masculino , Modelos Biológicos , Contração Muscular/fisiologia
18.
Med Biol Eng Comput ; 55(9): 1605-1619, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28161877

RESUMO

The integration of phase-contrast magnetic resonance images (PC-MRI) and computational fluid dynamics (CFD) is a way to obtain detailed information of patient-specific hemodynamics. This study proposes a novel strategy for imposing a pressure condition on the outlet boundary (called the outlet pressure) in CFD to minimize velocity differences between the PC-MRI measurement and the CFD simulation, and to investigate the effects of outlet pressure on the numerical solution. The investigation involved ten patient-specific aneurysms reconstructed from a digital subtraction angiography image, specifically on aneurysms located at the bifurcation region. To evaluate the effects of imposing the outlet pressure, three different approaches were used, namely: a pressure-fixed (P-fixed) approach; a flow rate control (Q-control) approach; and a velocity-field-optimized (V-optimized) approach. Numerical investigations show that the highest reduction in velocity difference always occurs in the V-optimized approach, where the mean of velocity difference (normalized by inlet velocity) is 19.3%. Additionally, the highest velocity differences appear near to the wall and vessel bifurcation for 60% of the patients, resulting in differences in wall shear stress. These findings provide a new methodology for PC-MRI integrated CFD simulation and are useful for understanding the evaluation of velocity difference between the PC-MRI and CFD.


Assuntos
Aneurisma/fisiopatologia , Velocidade do Fluxo Sanguíneo/fisiologia , Artérias Cerebrais/fisiologia , Meios de Contraste/administração & dosagem , Circulação Cerebrovascular/fisiologia , Simulação por Computador , Feminino , Hemodinâmica/fisiologia , Humanos , Hidrodinâmica , Imageamento por Ressonância Magnética/métodos , Masculino , Modelos Cardiovasculares , Estresse Mecânico
19.
Med Biol Eng Comput ; 55(5): 697-710, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27444298

RESUMO

Coil embolization of cerebral aneurysms with inhomogeneous coil distribution leads to an incomplete occlusion of the aneurysm. However, the effects of this factor on the blood flow characteristics are still not fully understood. This study investigates the effects of coil configuration on the blood flow characteristics in a coil-embolized aneurysm using computational fluid dynamics (CFD) simulation. The blood flow analysis in the aneurysm with coil embolization was performed using a coil deployment (CD) model, in which the coil configuration was constructed using a physics-based simulation of the CD. In the CFD results, total flow momentum and kinetic energy in the aneurysm gradually decayed with increasing coil packing density (PD), regardless of the coil configuration attributed to deployment conditions. However, the total shear rate in the aneurysm was relatively high and the strength of the local shear flow varied based on the differences in coil configuration, even at adequate PDs used in clinical practice (20-25 %). Because the sufficient shear rate reduction is a well-known factor in the blood clot formation occluding the aneurysm inside, the present study gives useful insight into the effects of coil configuration on the treatment efficiency of coil embolization.


Assuntos
Circulação Cerebrovascular/fisiologia , Aneurisma Intracraniano/fisiopatologia , Simulação por Computador , Embolização Terapêutica/métodos , Hemodinâmica/fisiologia , Humanos , Hidrodinâmica , Modelos Cardiovasculares , Stents
20.
J Biomech ; 50: 234-239, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27871678

RESUMO

This paper investigates the relationship between airway closure dynamics and acoustic fluctuations in expiratory crackles using direct numerical simulation. A unified mathematical model is proposed to deal with flow in an airway, elastic deformation of the airway wall, surface tension driven motion of the liquid film that lines the airway, and their acoustic fluctuations because of material compressibility. Airway closure is induced by increasing the surrounding pressure, then the source of the pressure fluctuations is measured over time. Our results show that the airway closure occurs suddenly because of a bridge formation of the liquid film, and high energy transfer occurs between the kinetic energy, the surface energy of the liquid interface, and the elastic energy of the airway wall, invoking a large acoustic fluctuation that causes the expiratory crackles. Nonlinear behavior is observed in terms of the airway wall stiffness; the dynamic motion of the airway closure becomes moderate and both the energy transfer and acoustic fluctuations are dramatically reduced with an increase in airway wall stiffness.


Assuntos
Modelos Biológicos , Sons Respiratórios/fisiopatologia , Acústica , Simulação por Computador , Transferência de Energia , Expiração , Pulmão/fisiopatologia , Pressão , Sistema Respiratório , Tensão Superficial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...